首页> 外文OA文献 >Data Mining for better material synthesis: the case of pulsed laser deposition of complex oxides
【2h】

Data Mining for better material synthesis: the case of pulsed laser deposition of complex oxides

机译:数据挖掘用于更好的材料合成:脉冲激光的情况   复合氧化物的沉积

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The pursuit of more advanced electronics, finding solutions to energy needs,and tackling a wealth of social issues often hinges upon the discovery andoptimization of new functional materials that enable disruptive technologies orapplications. However, the discovery rate of these materials is alarmingly low.Much of the information that could drive this rate higher is scattered acrosstens of thousands of papers in the extant literature published over severaldecades, and almost all of it is not collated and thus cannot be used in itsentirety. Many of these limitations can be circumvented if the experimentalisthas access to systematized collections of prior experimental procedures andresults that can be analyzed and built upon. Here, we investigate theproperty-processing relationship during growth of oxide films by pulsed laserdeposition. To do so, we develop an enabling software tool to (1) mine theliterature of relevant papers for synthesis parameters and functionalproperties of previously studied materials, (2) enhance the accuracy of thismining through crowd sourcing approaches, (3) create a searchable repositorythat will be a community-wide resource enabling material scientists to leveragethis information, and (4) provide through the Jupyter notebook platform, simplemachine-learning-based analysis to learn the complex interactions betweengrowth parameters and functional properties (all data and codes available onhttps://github.com/ORNL-DataMatls). The results allow visualization of growthwindows, trends and outliers, and which can serve as a template for analyzingthe distribution of growth conditions, provide starting points for relatedcompounds and act as feedback for first-principles calculations. Such toolswill comprise an integral part of the materials design schema in the comingdecade.
机译:追求更先进的电子产品,找到能源解决方案以及解决众多社会问题,通常取决于发现和优化可破坏性技术或应用的新功能材料。但是,这些材料的发现率低得令人震惊,许多可能导致这种材料升高的信息散布在数十年来发表的现有文献中的成千上万篇论文中,几乎所有的文献都没有整理好,因此无法使用。在其整体上。如果实验人员可以访问以前的实验程序和可以分析和建立的结果的系统化集合,则可以避免许多限制。在此,我们研究了脉冲激光沉积在氧化膜生长过程中的性能-加工关系。为此,我们开发了一个支持软件的工具,以(1)挖掘相关论文的文献以获取先前研究材料的合成参数和功能特性,(2)通过众包方法提高挖掘的准确性,(3)创建一个可搜索的存储库,成为社区范围的资源,使材料科学家可以利用此信息,并且(4)通过Jupyter笔记本平台提供基于机器学习的简单分析,以了解生长参数与功能特性之间的复杂相互作用(所有数据和代码均可在https:// github.com/ORNL-DataMatls)。结果允许可视化生长窗口,趋势和离群值,并且可以用作分析生长条件分布的模板,提供相关化合物的起点并充当第一性原理计算的反馈。这样的工具将成为未来十年材料设计方案不可或缺的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号